Eduqas Physics GCSE Topic 3.1: Forces and their interactions Mark Schemes for Questions by topic ## 1. | Question | | | Marking details | Marks | |----------|-----|-------|---|-------| | 4. | (a) | | Initially weight is greater than air resistance [so he accelerates] (1) as he goes faster air resistance increases (1) eventually the forces balance (1) To award all 3 marks the third statement written down must be linked to one of the previous two statements. | 3 | | | (b) | (i) | Change in momentum = 118×373 (1) = 44014 [kg m/s] (1) | 2 | | | | (ii) | Resultant force = $\frac{44014}{42}$ (1) = 1048[N] (1) ecf from (i)
OR use of $F = ma = 118 \times 8.9$ (1) = 1050 [N] (1) | 2 | | | | (iii) | $W = 118 \times 10 = 1180 \mathrm{N}$ (1)
Air resistance = W – resultant force or $1180 - 1048$ (1)
= $132 \mathrm{[N]}$ (1) ecf from (ii) & on weight
N.B. Answer mark awarded only if correct sign present
e.g. $118 - 1048$ (1) = -930 [N] | 3 | | | (c) | | Air resistance force small (1) because in contact with small number of air particles [per second] / so need to go very quickly for air resistance to balance weight / so need to go very quickly to reach terminal velocity (1) To award both marks both statements must be linked. | 2 | | | | | Question total | [12] | #### 2. | | Question | | Marking details | | |----|----------|-------|---|-----| | 5. | (a) | (i) | Mass is the amount of inertia or material (accept "stuff" (1), whereas weight is the pull of gravity on the car (1). Do not accept that mass is measured in kg, weight is measured in Newtons. | 2 | | | | (ii) | weight = $800 \times 10 = 8000$ [N] (1-ans) | 1 | | | (b) | (i) | 3 000 [N] | 1 | | | | (ii) | 1 200 [N] | 1 | | | | (iii) | $a = \frac{1200(\text{ecf})(\text{ii})}{800} \text{ (1-sub)} = 1.5 \text{ [m/s}^2\text{] (1-ans)}$ | 2 | | | | (iv) | The [horizontal] forces become balanced (accept match / equal / level out) (1) because the <u>air resistance (or drag)</u> increases [with speed] (1) To award both marks both statements must be linked. | 2 | | | | | Question total | [9] | ## 3. | Question | | Answer / Explanatory Notes | Marks
Available | |----------|------------|---|--------------------| | | | Question total | [6] | | 4. | (a) | Initial K.E. = $0.5 \times 1500 \times 15^2 = 168750$ [J] (1)
Final K.E. = $0.5 \times 1500 \times 5^2 = 18750$ [J] (1)
Loss = 150000 [J] (1) (award 1 mark for doing any subtraction but award no marks for use of $(15-5)^2$.) | 3 | | | <i>(b)</i> | $F = \frac{150000(ecf)}{7.5} = 20000 [\text{N}] (1) \text{manip,} (1) \text{subst,} (1) \text{ans}$ For candidates who present a momentum argument: $\frac{x}{t} = \frac{(u+v)}{2} \text{to find time} = 0.75 [\text{s}](1)$ momentum change = 15 000 [kg m/s](1) $F = \frac{15000(ecf)}{0.75(ecf)} = 20000 [\text{N}] (1)$ | 3 | | | (c) | F = 20000[N] | 1 | | | | Question total | [7] | # 4. | Sub-section | | Mark | Answer | Accept | Neutral answer | Do not accept | |-------------|-------|------|--|--------|----------------|-----------------| | (a) | (i) | 2 | work = 50 × 44 (1-subs) = 2200 [J] (1-ans) | | | | | | (ii) | 1 | 3200 + 2200 (ecf from (a)(i)) = 5400 [J] (1-ans) | | | | | | (iii) | 1 | 3200 – 2200 (ecf from (a)(i)) = 1000 [J] (1-ans) | | | Negative answer | #### **5**. | Question | Answers | Extra information | Mark | AO /
Spec. Ref | |----------|--|--|------|-------------------| | 02.1 | any two from: | | 2 | AO2/1 | | | bungee rope may snap | | | 4.1.1 | | | rope may extend too muchstudent may land in the river | | | WS1 | | 02.2 | gravitational potential | correct order only | 1 | AO1/1 | | | kinetic | | 1 | 4.1.1.1 | | | elastic potential | | 1 | | | 02.3 | ½ × 40 × 35 ² | | 1 | AO2/2 | | | 24 500 (J) | accept 25 000 (J) (2 significant figures) | 1 | 4.1.1.2 | | | | allow 24 500 (J) with no working shown for 2 marks | | | | Total | | | 7 |] | | Question | Answer | Acceptable answers | Mark | |----------|-------------------------------|--------------------|------| | Number | | | | | 3(a)(i) | D the spring has more elastic | | | | | potential energy than the | | | | | weight has kinetic energy | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 3(a)(ii) | A description including three from | care should be taken not to
award marks for contradictory
examples
Starting point for description
does not matter
Ignore sound energy | | | | MP1 Elastic potential energy /EPE (in stretched spring) (1) | | | | | MP2 (EPE is) transferred to KE (initially) (1) | EPE becomes/goes to KE (initially) | | | | MP3 change from KE to GPE or vice versa(1) | | | | | MP4 (correct idea of) energy changes continuing | | | | | MP5 {total mechanical energy
/kinetic +potential energy}
decreases (continuously) (1) | | | | | MP6 (Eventually all is transferred to) {thermal/heat} (energy) (1) | condone
amplitude decreases to zero
KE or PE 'lost' to surroundings | | | | | | (3) | 7. | (a | (i) | straight line be | tweer | A and B | B1 | |-----|------|-----------------------|---------|--------------------------------------|------------| | | (ii) | limit of proport | ionalit | у | B1 | | (b) | (W | D =) ½ F×dOI | R Fave | × d OR 6.0 × 0.030 OR 18 (J) | C1 | | | 0.1 | 8J | | | A1 | | (c) | (i) | | | 0 - 4.0 OR F = kx OR 4.0 (N/cm) | C1 | | | | $12.0 \times 2.0/3.0$ | OR 4 | .0 × 2.0 OR 8.0 (N) | C1 | | | | 0.80 kg OR 80 | 0g | | Α | | | (ii) | (e =) 1.0 (cm) | OR | $(\Delta e = -)1.0 \text{ (cm)}$ | C1 | | | | 4.0 N | | 4.0 N | A1 | | | | | | | [Total: 9] |