Eduqas Physics GCSE Topic 3.1: Forces and their interactions

Mark Schemes for Questions by topic

1.

Question			Marking details	Marks
4.	(a)		Initially weight is greater than air resistance [so he accelerates] (1) as he goes faster air resistance increases (1) eventually the forces balance (1) To award all 3 marks the third statement written down must be linked to one of the previous two statements.	3
	(b)	(i)	Change in momentum = 118×373 (1) = 44014 [kg m/s] (1)	2
		(ii)	Resultant force = $\frac{44014}{42}$ (1) = 1048[N] (1) ecf from (i) OR use of $F = ma = 118 \times 8.9$ (1) = 1050 [N] (1)	2
		(iii)	$W = 118 \times 10 = 1180 \mathrm{N}$ (1) Air resistance = W – resultant force or $1180 - 1048$ (1) = $132 \mathrm{[N]}$ (1) ecf from (ii) & on weight N.B. Answer mark awarded only if correct sign present e.g. $118 - 1048$ (1) = -930 [N]	3
	(c)		Air resistance force small (1) because in contact with small number of air particles [per second] / so need to go very quickly for air resistance to balance weight / so need to go very quickly to reach terminal velocity (1) To award both marks both statements must be linked.	2
			Question total	[12]

2.

	Question		Marking details	
5.	(a)	(i)	Mass is the amount of inertia or material (accept "stuff" (1), whereas weight is the pull of gravity on the car (1). Do not accept that mass is measured in kg, weight is measured in Newtons.	2
		(ii)	weight = $800 \times 10 = 8000$ [N] (1-ans)	1
	(b)	(i)	3 000 [N]	1
		(ii)	1 200 [N]	1
		(iii)	$a = \frac{1200(\text{ecf})(\text{ii})}{800} \text{ (1-sub)} = 1.5 \text{ [m/s}^2\text{] (1-ans)}$	2
		(iv)	The [horizontal] forces become balanced (accept match / equal / level out) (1) because the <u>air resistance (or drag)</u> increases [with speed] (1) To award both marks both statements must be linked.	2
			Question total	[9]

3.

Question		Answer / Explanatory Notes	Marks Available
		Question total	[6]
4.	(a)	Initial K.E. = $0.5 \times 1500 \times 15^2 = 168750$ [J] (1) Final K.E. = $0.5 \times 1500 \times 5^2 = 18750$ [J] (1) Loss = 150000 [J] (1) (award 1 mark for doing any subtraction but award no marks for use of $(15-5)^2$.)	3
	<i>(b)</i>	$F = \frac{150000(ecf)}{7.5} = 20000 [\text{N}] (1) \text{manip,} (1) \text{subst,} (1) \text{ans}$ For candidates who present a momentum argument: $\frac{x}{t} = \frac{(u+v)}{2} \text{to find time} = 0.75 [\text{s}](1)$ momentum change = 15 000 [kg m/s](1) $F = \frac{15000(ecf)}{0.75(ecf)} = 20000 [\text{N}] (1)$	3
	(c)	F = 20000[N]	1
		Question total	[7]

4.

Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)	2	work = 50 × 44 (1-subs) = 2200 [J] (1-ans)			
	(ii)	1	3200 + 2200 (ecf from (a)(i)) = 5400 [J] (1-ans)			
	(iii)	1	3200 – 2200 (ecf from (a)(i)) = 1000 [J] (1-ans)			Negative answer

5.

Question	Answers	Extra information	Mark	AO / Spec. Ref
02.1	any two from:		2	AO2/1
	bungee rope may snap			4.1.1
	rope may extend too muchstudent may land in the river			WS1
02.2	gravitational potential	correct order only	1	AO1/1
	kinetic		1	4.1.1.1
	elastic potential		1	
02.3	½ × 40 × 35 ²		1	AO2/2
	24 500 (J)	accept 25 000 (J) (2 significant figures)	1	4.1.1.2
		allow 24 500 (J) with no working shown for 2 marks		
Total			7]

Question	Answer	Acceptable answers	Mark
Number			
3(a)(i)	D the spring has more elastic		
	potential energy than the		
	weight has kinetic energy		(1)

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	A description including three from	care should be taken not to award marks for contradictory examples Starting point for description does not matter Ignore sound energy	
	MP1 Elastic potential energy /EPE (in stretched spring) (1)		
	MP2 (EPE is) transferred to KE (initially) (1)	EPE becomes/goes to KE (initially)	
	MP3 change from KE to GPE or vice versa(1)		
	MP4 (correct idea of) energy changes continuing		
	MP5 {total mechanical energy /kinetic +potential energy} decreases (continuously) (1)		
	MP6 (Eventually all is transferred to) {thermal/heat} (energy) (1)	condone amplitude decreases to zero KE or PE 'lost' to surroundings	
			(3)

7.

(a	(i)	straight line be	tweer	A and B	B1
	(ii)	limit of proport	ionalit	у	B1
(b)	(W	D =) ½ F×dOI	R Fave	× d OR 6.0 × 0.030 OR 18 (J)	C1
	0.1	8J			A1
(c)	(i)			0 - 4.0 OR F = kx OR 4.0 (N/cm)	C1
		$12.0 \times 2.0/3.0$	OR 4	.0 × 2.0 OR 8.0 (N)	C1
		0.80 kg OR 80	0g		Α
	(ii)	(e =) 1.0 (cm)	OR	$(\Delta e = -)1.0 \text{ (cm)}$	C1
		4.0 N		4.0 N	A1
					[Total: 9]